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1. Introduction

Bagger, Lambert [1 – 3] and Gustavsson [4, 5] discovered an interesting model for multiple

M2-branes (which we will call BLG model in the following) based on an algebraic structure

called Lie 3-algebra. Since membranes are expected to be the fundamental building blocks

of M-theory, it is intriguing to ask how much does the BLG model know about M-theory.

Important information of M-theory is contained in the structure of the eleven dimensional

space-time superalgebra, or “M-theory superalgebra” [6]. The BLG model is not space-

time supersymmetric, at least manifestly. However, since fundamental membrane action

is expected to have space-time supersymmetry, we may hope that the BLG model can be

related to a gauge-fixed form of some manifestly space-time supersymmetric formulation.

In this paper we show that the most part of the eleven dimensional space-time super-

Poincaré algebra with central extensions can actually be constructed from the BLG model,

and indeed it captures important aspects of M-theory; namely charges of BPS branes. One

of the crucial ingredients in constructing the space-time superalgebra is an existence of a

central element in the Lie 3-algebra which the BLG model is based on. The shift of bosonic

as well as fermionic fields in this central element are symmetries of the BLG model. The

shift of the bosonic fields corresponds to translations in space-time, whereas the shift in
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the fermionic fields represents non-linearly realized part of the space-time super-Poincaré

algebra.

Similar discussions on the worldvolume supersymmetry algebra of the BLG model

which is identified with the linearly realized part of the space-time supersymmetry can

be found in a recent paper [7]. We extend the results by including configurations which

take values in non-trace elements (trace elements and non-trace elements are defined in

section 2.1) and obtained more central charges which provide necessary pieces of the M-

theory superalgebra. The algebra and the central charges which arise by including the

fermionic shift symmetry are our new results. One of our main interests is on the charge of

the five-brane constructed in [8, 9], and they are obtained only by including the fermionic

shift symmetry in the algebra. Five-brane charges are of particular interests because in the

matrix model for M-theory [10] transverse five-branes are not seen in the superalgebra [11].

Space-time superalgebra of a deformed BLG model without central extensions was con-

structed in [12]. Other aspects of BPS configurations for the worldvolume supersymmetry

of the BLG model were studied in [13 – 15].

2. Space-time superalgebra from multiple membranes

2.1 The Bagger-Lambert-Gustavsson model

The Bagger-Lambert action which was proposed as a description for multiple M2-branes [2]

(see also [1, 3 – 5]) has N = 8 worldvolume supersymmetry. Furthermore, it has a novel

gauge symmetry based on an algebraic structure called Lie 3-algebra [16]. For a linear

space V =
∑dimV

a=1 vaT
a; va ∈ C, Lie 3-algebra structure is defined by a multi-linear map

which we call 3-bracket [∗, ∗, ∗]: V⊗3 → V satisfying following properties:

1. Skew-symmetry:

[Aσ(1), Aσ(2), Aσ(3)] = (−1)|σ|[A1, A2, A3]. (2.1)

2. Fundamental identity:

[A1, A2, [B1, B2, B3]]

= [[A1, A2, B1], B2, B3] + [B1, [A1, A2, B2], B3] + [B1, B2, [A1, A2, B3]].

(2.2)

A linear space endowed with a Lie 3-algebra structure will be called Lie 3-algebra and

typically denoted as A in this paper. In terms of the basis T a, Lie 3-algebra can be

expressed in terms of the structure constants fabc
d:

[T a, T b, T c] = fabc
dT

d. (2.3)

An element T a ∈ A is called a center if [T a, T b, T c] = 0,∀T b, T c ∈ A, and fabc
d = 0 in

this case. To construct the action, we will also need an inner product in Lie 3-algebra. We

assume the structure V = Vtr⊕Vntr, where elements in Vtr have inner product and elements

in Vntr do not. We will refer to the elements in Vtr as trace elements, and elements in Vntr
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as non-trace elements. By definition, elements T a, T b ∈ Vtr have inner product 〈∗, ∗〉:
Vtr ⊗ Vtr → C:

〈T a, T b〉 = hab. (2.4)

We will call hab as metric of Lie 3-algebra. We require following invariance of the inner

product which is important for the gauge invariance of the Bagger-Lambert action:

〈[T a, T b, T c], T d〉 + 〈T c, [T a, T b, T d]〉 = 0. (2.5)

Together with the skew-symmetry property (2.1), the invariance of the metric (2.5) requires

the indices of structure constants fabcd ≡ fabc
eh

ed to be totally anti-symmetric:

fabcd =
1

4!
f [abcd]. (2.6)

Remember that (2.6) is guaranteed only for trace elements with invariant metric. Inner

product and metric are not defined for non-trace elements. Nevertheless, the 3-bracket can

map non-trace elements to a trace element. These non-trace elements will play important

role in this paper. For more about Lie 3-algebra in the BLG model, see e.g. [17 – 25].

The Bagger-Lambert action is given by [2]

S =

∫

d3x L, (2.7)

where the Lagrangian density L is given by

L = −1

2
〈DµXI ,DµXI〉 +

i

2
〈Ψ̄,ΓµDµΨ〉 +

i

4
〈Ψ̄,ΓIJ [XI ,XJ ,Ψ]〉 − V (X) + LCS . (2.8)

XI ∈ Vtr
1 is a scalar field on the worldvolume and I is a SO(8) vector index. Ψ ∈ Vtr

are Majorana spinors on 1 + 2 dimensional worldvolume, but can be combined into a

single Majorana spinor in eleven dimensions subject to the chirality condition ΓΨ = −Ψ,

Γ ≡ Γ012. Notations for gamma matrices are summarized in the appendix. Dµ is the

covariant derivative

(DµXI(x))a = ∂µXI
a(x) − Ãµ

b
a(x)XI

b (x), Ãµ
b
a ≡ Aµcdf

cdb
a, (2.9)

where Aµ is a worldvolume gauge field. V (X) is the potential

V (X) =
1

12
〈[XI ,XJ ,XK ], [XI ,XJ ,XK ]〉. (2.10)

The Chern-Simons term for the gauge potential is given by

LCS =
1

2
εµνλ

(

fabcdAµab∂νAλcd +
2

3
f cda

gf
efgbAµabAνcdAλef

)

. (2.11)

1Later we will relax this condition slightly and allow constant backgrounds XI to take values in non-trace

elements.
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The Bagger-Lambert action is invariant under the following gauge transformation:

δΛXI
a = Λcd[T

c, T d,XI ]a = Λcdf
cde

aX
I
e = Λ̃e

aX
I
e ,

δΛΨa = Λcd[T
c, T d,Ψ]a = Λcdf

cde
aΨe = Λ̃e

aΨe,

δΛÃµ
b
a = ∂µΛ̃b

a − Λ̃b
cÃµ

c
a + Ãµ

b
cΛ̃

c
a, Λ̃b

a ≡ f cdb
aΛcd. (2.12)

The fundamental identity (2.2) leads to

δΛ[Φ(1),Φ(2),Φ(3)] = Λcd[T
c, T d, [Φ(1),Φ(2),Φ(3)]], (2.13)

where Φ’s collectively represent XI and Ψ. The metric is not involved in reaching (2.13)

and this formula applies to both trace elements and non-trace elements. On the other

hand, the invariance of the metric (2.5) leads to

δΛ〈Y,Z〉 = Λab

(

〈[T a, T b, Y ], Z〉 + 〈Y, [T a, T b, Z]〉
)

= 0. (2.14)

for any trace elements Y,Z which transform as δΛY = Λcd[T
c, T d, Y ], δΛZ =

Λcd[T
c, T d, Z]. (2.13) and (2.14) can be used to show the gauge invariance of the Bagger-

Lambert action.

2.2 Worldvolume supersymmetry of the BLG model

The Bagger-Lambert action is invariant under the following supersymmetry transforma-

tions:2

δǫX
I
a = iǭΓIΨa,

δǫΨa = DµXI
aΓµΓIǫ − 1

6
XI

b XJ
c XK

d f bcd
aΓ

IJKǫ,

δǫÃµ
b
a = iǭΓµΓIX

I
c Ψdf

cdb
a, (2.15)

where the supersymmetry parameter satisfies Γǫ = ǫ. The charge density, i.e. the tem-

poral component of the Noether current associated with the supersymmetry transforma-

tion (2.15), is found to be

qL = −ΓµΓIΓ0〈DµXI ,Ψ〉 − 1

6
ΓIJKΓ0〈[XI ,XJ ,XK ],Ψ〉, (2.16)

and the Noether charge is

QL =

∫

d2x qL. (2.17)

The suffix L indicates that it is identified with the linearly realized part of the space-time

supersymmetry.

In this paper we will often be interested in central charges which are proportional to

the volume of the membranes, which can be infinite for infinitely extended membranes. A

standard way to avoid infinities associated with such infinite volume arising from the (anti-)

2See [26] for a N = 1 superfield formalism.
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commutation relations of Noether charges is to use charge density. In the following, it is

understood that the fermions Ψ are set to zero after calculating the Dirac bracket, since we

are interested in bosonic backgrounds. The Dirac bracket of qL and QL is calculated to be

i{qL, QL}D = 2pµΓ+ΓµC

+zIJΓIJC + z0ijIJΓ0ijIJC

+z0iIJKLΓ0iIJKLC + zjIJKLΓjIJKLC

+z0IJKLΓ0IJKLC + zijIJKLΓijIJKLC, (2.18)

where

zIJ =
1

2

(

−ε0ij〈DiX
I ,DjX

J〉 + 〈D0X
K , [XK ,XI ,XJ ]〉

)

, (2.19)

z0ijIJ =
1

2

(

〈DiX
I ,DjX

J 〉 − 1

2
ε0

ij〈D0X
K , [XK ,XI ,XJ ]〉

)

, (2.20)

z0iIJKL =
1

6
〈DiX

I , [XJ ,XK ,XL]〉, (2.21)

ziIJKL = −1

6
ε0j

i〈DjX
I , [XJ ,XK ,XL]〉, (2.22)

z0IJKL = −1

8
〈[XM ,XI ,XJ ], [XM ,XK ,XL]〉, (2.23)

zijIJKL = − 1

16
ε0

ij〈[XM ,XI ,XJ ], [XM ,XK ,XL]〉. (2.24)

In the above, anti-symmetrization of the space-time indices is understood. And

Γ± ≡ (1 ± Γ)/2. This projection arises from the chirality of the supercharges: ΓQL = QL.

In the second, the third and the fourth lines of (2.18), two terms in the same line arise

from two different Gamma matrices in the projection Γ+ = (1 + Γ)/2. The bosonic part

of the Hamiltonian density is given by

H = p0 =
1

2
〈D0X

I ,D0X
I〉 +

1

2
〈DiX

I ,DiX
I〉 + V (X), (2.25)

and the momentum density is given by

pi = 〈D0X
I ,DiX

I〉. (2.26)

We refer to the appendix for details. These central charges have been discussed in [7];3 the

combination of the central charges (2.19) and (2.20) was found to be the charge of vortices,

and identified with M2-branes intersecting with the multiple M2-branes. The combination

of the central charges (2.21) and (2.22) was found to be the charge of Basu-Harvey

solution [27] which had been identified with M2-branes ending on M5-branes. Readers

interested in further discussions are advised to consult [7].

The central charges (2.23) and (2.24) vanish if we only consider trace elements in the

Lie 3-algebra due to the total anti-symmetry of the indices I, J,K,L and the fundamental

3The expressions for the central charges look different just because we haven’t used the equation of

motions.
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identity (2.2). However, we would like to take into account constant background con-

figurations of XI ’s which take values in non-trace elements. As long as they give trace

elements after putting into the 3-brackets in the Bagger-Lambert action, the action is still

well-defined and gauge invariant, provided the fluctuations around the background are still

restricted to trace elements.4 This kind of configurations give rise to BPS brane charges.

For example, in the case when the Bagger-Lambert action reduces to D2-brane action by

giving expectation value to the field X10
0 in the notation of [22], (2.23) and (2.24) reduce

to the form ∼ tr[XI ,XJ ][XK ,XL], where [∗, ∗] is the commutator of matrices and tr is the

trace for matrices, and the matrix size is to be taken to infinity.5 This term is analogous to

the D4-brane charge (as well as the charges of the D0-branes within the D4-branes) in the

matrix model for M-theory found in [11], and one should keep this kind of terms in order to

obtain all the BPS-brane charges in the model. In the current example, the action reduces

to D2-branes instead of D0-branes for the matrix model, so the charge should be inter-

preted as D6-brane charge. This type of configuration is also crucial for the construction

of the five-brane from the BLG model in [8, 9] and we will discuss this in section 2.4.

2.3 Space-time superalgebra from the BLG model

It has been noticed that the choice of Lie 3-algebra in the BLG model already contains the

choice of space-time in which membranes are embedded [28 – 30]. This is not surprising

if we recall the analogous situation in multiple D-brane worldvolume theory, where the

gauge group contains information of space-time, e.g. orientifold for gauge group SO. In

the BLG model, when there is a central element in the Lie 3-algebra there is a bosonic

shift symmetry in this direction:

δ~aX
I
⊙ = aI (aI : constant),

δ~aΨa = δ~aÃµ
b
a = 0, (2.27)

as well as the fermionic shift symmetry6

δηΨa = δa⊙η,

δηX
I
a = δηÃµ

b
a = 0. (2.28)

We use index ⊙ to denote the generator corresponding to the central element. In the

following, we restrict ourselves to the case where the metric for this central element takes

following form:

h⊙a = δ⊙a. (2.29)

4Recall (2.13) and (2.14). The configuration is gauge covariant, but the value of the action is invariant

under gauge transformations with parameters taking values in trace elements.
5In this case, actually the commutator of XI ’s are still non-trace elements, and the central charge

diverges. This is attributed to the infinite volume of indefinitely extended D6-branes discussed below. The

charge density per D6-brane worldvolume is still finite.
6The fermionic shift symmetry has been used in [9] to obtain the worldvolume supersymmetry of the

five-brane action constructed from the BLG model.
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With this metric, it is natural to identify XI
⊙ as the center of mass coordinate in the

direction transverse to membranes up to normalization, and (2.27) is nothing but the

translational symmetry in this direction. We further assume that there is only one such

central element with metric of the form (2.29) in the Lie 3-algebra,7 because it is strange

if there are two sets of center of mass coordinates.8 In our setting, the Noether charge

density associated with the transformation (2.28) is given by

qNL = −Γ0Ψ⊙, (2.30)

and the Noether charge is

QNL =

∫

d2x qNL, (2.31)

where the suffix NL indicates that it is identified with the non-linearly realized part of the

space-time supersymmetry. Note that QNL has the same chirality with the worldvolume

fermions Ψ, i.e. ΓQNL = −QNL, as opposed to QL.

The BLG model is not space-time super-Poincaré symmetric, at least manifestly. How-

ever, if we want to regard the model as a description of multiple M2-branes, it is natural to

expect that it is a gauge fixed form of some space-time supersymmetric and worldvolume

reparametrization invariant formulation. In the case of single supermembrane, it has been

shown that the space-time supersymmetry reduces to the worldvolume supersymmetry by

static gauge fixing [31 – 33]. After the gauge fixing, the linearly realized part of the space-

time supersymmetry becomes global supersymmetry on the worldvolume theory, whereas

the Nambu-Goldstone modes for the non-linearly realized part of the space-time supersym-

metry become fermion fields on the worldvolume [34]. In our case, fields Ψ can be thought

of as Nambu-Goldstone fermions for non-linearly realized space-time supersymmetry. In

the following we will show that the charge QNL associated with the fermionic shift symme-

try (2.28) almost provides the non-linearly realized part of the space-time supersymmetry,

though there is a missing piece as we will see shortly.

The Dirac bracket of qNL and QL are given as

i{qNL, QL}D + i{qL, QNL}D = pIΓ
IC +

1

2
ziIΓ

iIC +
1

2
zijIJKΓijIJKC, (2.32)

where

pI ≡ ∂0X
I
⊙ (2.33)

is the momentum density in the direction transverse to the membranes. The central charge

densities are found to be

ziI = 2∂jX
I
⊙εi

j0 , (2.34)

zijIJK = −1

6
ε0

ij〈[XI ,XJ ,XK ], T⊙〉. (2.35)

7We allow other central elements with non-positive-definite metric [20 – 22].
8Though it may work with some kind of gauging.
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The central charge density (2.34) describes tilting multiple membranes. For example, let

us consider the situation where XI
⊙ is compactified on a circle with radius RI , and xj is

compactified on a circle with radius rj. Then

XI
⊙ =

n

m

RI

rj
xj (2.36)

is a configuration of membranes which winds the I-th direction for n times and j-th direc-

tion for m times. This configuration gives topological winding numbers through the central

charge density (2.34).

The central charge density (2.35) vanishes when all XI ’s in the 3-bracket take values

in trace elements of the Lie 3-algebra, due to the definition of the central element and

the invariance of the metric (2.5). This is not necessarily the case if we consider constant

configurations where XI ’s take values in non-trace elements. As long as we obtain a trace

element after putting such XI ’s into the 3-bracket, the inner product in (2.35) is well-

defined and gives a finite number. The Bagger-Lambert action is also well-defined for such

configuration, provided it is regarded as a background;9 fluctuations from the background

should still be in the space of trace elements. To describe a five-brane in the BLG model

based on Nambu-Poisson bracket [8, 9], the background configuration is indeed given by

such XI ’s taking values in non-trace elements, and (2.35) gives the charge of the five-brane.

We will come back to this point again in section 2.4.

The Dirac bracket of qNL and QNL is given by

i{qNL, QNL}D = Γ−Γ0C =
1 − Γ

2
Γ0C. (2.37)

The last expression in (2.37) can be interpreted as a sum of the mass density and the charge

density of the static multiple membranes. (The absence of such term in (2.18) can be

regarded as cancellation of mass and charge for the BPS configuration of membranes [35].)

However, it does not contain contributions from excitations on the worldvolume to the

energy nor the momentum in the worldvolume direction, which are required for making up

the eleven dimensional super-Poincaré algebra. Besides this point, we can construct full

space-time supercharge density q and charge Q as follows:

q = qL + 2
√

NqNL, (2.38)

Q = QL + 2
√

NQNL. (2.39)

Here, we have introduced a constant N which can be interpreted as “number” of mem-

branes. The reason for this factor is as follows: Up to normalization XI
⊙ is interpreted as

the center of mass coordinate in the transverse directions. To define the center of mass,

we need to know the number of membranes. However, there’s no definite rule for relating

the dimension of a Lie 3-algebra and the number of membranes. In the case of the Lie

3-algebra constructed from ordinary Lie algebra in order to derive D2-brane action from

the Bagger-Lambert action [20 – 22], the number of membranes should be equal to the

9Note that the covariant derivative (2.9) can be rewritten as DµXI = ∂µXI
− Aµ cd[T

c, T d, XI ].
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number of D2-branes and determined from the rank of the Lie group, e.g. N for U(N).

We will discuss the case when Nambu-Poisson bracket is chosen as Lie 3-algebra in the

next subsection. Since the number of membranes is decided case by case depending on the

choice of Lie 3-algebra, we just denote this number as N .

Finally, we obtain the eleven dimensional super-Poincaré algebra with central exten-

sions:

i{q,Q}D = 2(Γ0 − Γ12)CN + 2pµΓ+ΓµC + 2pIΓ
IC

√
N

+ziIΓ
iIC

√
N + zijIJKΓijIJKC

√
N

+zIJΓIJC + z0ijIJΓ0ijIJC

+z0iIJKLΓ0iIJKLC + zjIJKLΓjIJKLC

+z0IJKLΓ0IJKLC + zijIJKLΓijIJKLC. (2.40)

As mentioned above, the first term of (2.40) is interpreted as coming form tension and

charge per volume of N membranes. From the kinetic term the relative normalization

between XI
⊙ and the center of mass coordinate is read off as XI

⊙ =
√

NXI
C.M., where XI

C.M.

is the center of mass coordinate. Then pI

√
N = pC.M.

I N is the total momentum in the

direction transverse to membranes, and N appears in an appropriate way for a number of

membranes.

Eq. (2.40) is almost the eleven dimensional super-Poincaré algebra, except that the

piece 2pµΓ−ΓµC is missing in the right hand side of (2.40). It is important that the piece

2pIΓ
IC for the eleven dimensional super-Poincaré algebra has been obtained. If we had a

space-time supersymmetric formulation with worldvolume reparametrization invariance for

multiple membrane action which reduces to the Bagger-Lambert action after gauge fixing,

this would be understood as due to the static gauge and kappa symmetry gauge fixing.

We hope to clarify this point in the future. Further speculations will be given in the last

discussion section.

2.4 On M5-brane charges in the BLG model

An example of Lie 3-algebra is given by Nambu-Poisson bracket on an “internal” three-

manifold. For simplicity, we take T 3 to be the internal three-manifold. For more about

the use of Nambu-Poisson bracket in the BLG model, see [17, 8, 9]. We consider the

Nambu-Poisson bracket on T 3 given by

{f, g, h}NP =
∑

µ̇ν̇λ̇

Ωεµ̇ν̇λ̇∂µ̇f(y)∂ν̇g(y)∂λ̇h(y). (2.41)

Here yµ̇ (µ̇ = 1̇, 2̇, 3̇) are flat coordinates on T 3 with the identification yµ̇ ∼ yµ̇ + 2π, and

Ω is a constant. The invariant inner product can be defined by the integral over T 3:

〈f, g〉 ≡
∫

T 3

d3y f(y)g(y). (2.42)

The trace elements of the Lie 3-algebra are given by square-integrable periodic functions

on T 3. If we denote the basis of such functions on T 3 as χa(y) (a = 1, 2, 3, · · · ), the

– 9 –
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Nambu-Poisson bracket can be written with structure constants:

{χa, χb, χc}NP =
∑

d

fabc
dχ

d . (2.43)

Using the definition of the Nambu-Poisson bracket (2.41), it is easy to check that the

fundamental identity (2.2) holds. We normalize the basis as 〈χa, χb〉 = δab; then the

normalized central element is given as T⊙ = 1/
√

(2π)3.

We would like to consider the case where the target space is also compactified on a T 3.

By this we mean the identification in the central element:

XI(y) ∼ XI(y) + 2πRI , (2.44)

for say I = 3, 4, 5, where RI is the compactification radius in the I-th direction.

Now let us consider a background configuration

XI = RImIy
µ̇, µ̇ = I − 2 (I = 3, 4, 5). (2.45)

The functions yµ̇ (µ̇ = 1̇, 2̇, 3̇) are not periodic functions on T 3: They have a jump at

yµ̇ = 2π. However, when the target space is also compactified as in (2.44), such jump can

be set to null for the configuration (2.45) due to the identification in the target space. In

this case, it is natural to include these elements in the Lie 3-algebra. However, there is no

natural way to define invariant inner product for these elements. For example,
∫

T 3

d3y {y1̇, y2̇, 1}NP · y3̇ = 0

6= −
∫

T 3

d3y 1 · {y1̇, y2̇, y3̇}NP = Ω(2π)3. (2.46)

This means that the integration over T 3 does not provide an invariant metric for these

new elements. Therefore, these elements should be included as non-trace elements. In

the Bagger-Lambert action, these XI ’s in non-trace elements always appear inside the

Nambu-Poisson brackets; and the Nambu-Poisson brackets with such non-trace elements

give trace elements, since the derivative inside the Nambu-Poisson bracket acting on yµ̇

gives a constant which is a trace element. As long as such configuration is regarded as a non-

dynamical background independent of the worldvolume coordinates, the Bagger-Lambert

action is still well-defined and gauge invariant.

Now we come back to the issue of the “number of membranes” discussed in the previous

subsection. In the current case where there is a natural notion of identity “1” in the

elements and the metric is positive definite, it is natural to interpret the number we get

when we put “1” into the inner product as the number of membranes. This is nothing but

the volume of the internal manifold T 3. Therefore we set N = (2π)3.

The background configuration (2.45) contributes to the five-brane charge (2.35) as

zijIJK

√
N = − 1

3!
εIJK(2π)3ε0

ijΩR3R4R5m3m4m5. (2.47)

(2.47) is interpreted as a charge of a five-brane wrapping the I-th direction for mI times.
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Note that the potential term in the Bagger-Lambert action can be rewritten as

V (X) =
1

12

(

〈[XI ,XJ ,XK ] − W IJKT⊙, [XI ,XJ ,XK ] − W IJKT⊙〉

+2W IJK〈[XI ,XJ ,XK ], T⊙〉 − W IJKW IJK

)

=
1

12
〈[XI ,XJ ,XK ] − W IJKT⊙, [XI ,XJ ,XK ] − W IJKT⊙〉

−1

2
W IJKε0ijzijIJK − 1

12
W IJKW IJK, (2.48)

where W IJK is a constant totally anti-symmetric tensor

W IJK = εIJKΩR3R4R5m3m4m5. (2.49)

Therefore the static configuration (2.45) saturates the minimal energy bound for given

winding numbers.

Some time ago a matrix model was proposed as a description of M-theory [10], and

BPS branes in this model were analyzed from the central extension of the superalgebra [11].

It was found that the charge of transverse five-branes, i.e. five-branes transverse to the M-

theory circle which relates M-theory to type IIA string, is absent in this model. This can

be a problem if the model is the fundamental definition of M-theory, though the model

may better be regarded as M-theory in a particular frame in which some information of

the full M-theory has been dropped off. From our results for the M-theory superalge-

bra (2.40), we can draw a scenario for how such thing can happen in the BLG model: The

action for the matrix model for M-theory is basically that of the large number of multiple

D0-branes in type IIA string theory. From the Bagger-Lambert action, such action may

be obtained by first reducing it to multiple D2-brane action [36, 20 – 22], then wrapping

D2-branes on T 2, and then performing T-duality transformations in the T 2 directions. To

obtain multiple D2-brane action from the Bagger-Lambert action, it is necessary to reduce

Lie 3-algebra to ordinary Lie algebra. This should be achieved by some background con-

figuration in the BLG model which describes a compactification on the M-theory circle.

However, by this background configuration the five-brane charges expressed using Lie 3-

algebra in (2.21), (2.22) or (2.35) must also reduce to the expression using ordinary Lie

algebra. This should be interpreted as five-branes are also wrapping the circle direction.

Thus when one obtains the matrix model for M-theory from the Bagger-Lambert action,

transverse five-brane charges which uses Lie 3-algebra structure in an essential way, i.e.

those which do not reduce to a form written with ordinary Lie algebra, necessarily drop

out from the model.

3. Summary and discussions

In this paper we studied the space-time supersymmetry of the BLG model when there is a

central element in the Lie 3-algebra, and obtained the eleven dimensional super-Poincaré

algebra with central extensions, except the piece 2pµΓ−ΓµC. The first crucial ingredi-

ent in the construction of the space-time superalgebra was to include the fermionic shift
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symmetry associated with the central element in the Lie 3-algebra. This fermionic shift

symmetry was identified with the non-linearly realized part of the space-time supersym-

metry. Together with the linearly realized worldvolume supersymmetry, it makes up the

eleven dimensional super-Poincaré algebra. The second important ingredient was to take

into account the non-trace elements for constant background configurations. The central

charges constructed from non-trace elements provide important pieces of the M-theory su-

peralgebra. For example, the charge of the five-brane constructed in [8, 9] can only be

constructed by taking into account such non-trace elements.

Compared with the matrix model for M-theory which can be regarded as regularization

of supermembrane action in the light-cone gauge [37], the BLG model lacks relation to a

manifestly space-time supersymmetric formulation at this moment. Nevertheless, in this

paper we could obtain the eleven dimensional super-Poincaré algebra almost fully. This

suggests the existence of a manifestly space-time supersymmetric formulation with world-

volume reparametrization invariance which reduces to the BLG model after gauge fixing. It

will be very interesting to construct such manifestly space-time supersymmetric formulation

for the BLG model, and understand why the piece 2pµΓ−ΓµC is missing in our algebra. In

the case where the Lie 3-algebra is Nambu-Poisson bracket, it is likely that such manifestly

space-time supersymmetric formulation is some covariant formulation of single M5-brane

worldvolume action in three-form field background rather than multiple M2-brane action:

If we can find a way to relate such formulation to the five-brane action constructed from

the Bagger-Lambert action in [8, 9], we will be able to understand the origin of our super-

Poincaré algebra. An interesting worldvolume reparametrization invariant formulation of

single M5-brane action which might be related to the BLG model was constructed in [38],

though only the bosonic part has been worked out. A worldvolume supergravity action

which in a limit reduces to the Bagger-Lambert action was constructed in [39].

When the Lie 3-algebra does not have a central element, the fermionic shift symmetry

is absent. In this case the space-time supersymmetry should be less compared with the flat

space. This may be regarded as a supersymmetric counterpart of the absence of space-time

translational symmetry in the orbifold interpretation of the model based on so-called A4

algebra [28 – 30].

The BLG model is superconformal at the classical level, and expected to be so at

the quantum level. The superconformal symmetry should correspond to the near horizon

super-isometry in AdS-CFT correspondence, and this is one of the strongest motivations

for studying this model. It will be interesting to construct central extension of the super-

conformal algebra explicitly in the BLG model.
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Appendix

A. Notation for indices

worldvolume coordinates : µ, ν = 0, 1, 2

spatial worldvolume coordinates : i, j = 1, 2

transverse space coordinates : I, J = 3, · · · , 10

all 11D coordinates : m,n = 0, 1, · · · , 10

Spin(1, 10) spinor indices : α, β = 1, · · · , 32

basis of Lie 3-algebra A : a, b, · · · ,dimA (A.1)

B. Eleven dimensional Clifford algebra

11D Gamma matrices

{Γm,Γn} = 2ηmn (m,n = 0, 1, · · · , 10). (B.1)

We use mostly plus convention, i.e. η00 = −1, ηmn = δmn(m,n 6= 0). The charge conjuga-

tion matrix C in eleven dimension satisfies

C−1ΓmC = −(Γm)T , CT = −C, C†C = 1. (B.2)

Γm1m2···mr ≡ 1

r!
Γ[m1 · · ·Γmr ]

= Γm1Γm2 · · ·Γmr (when all ms are different).

= 0 (otherwise). (B.3)

Γm1m2···mrC is a symmetric matrix for r = 1, 2, 5, 6, 9, 10.

B.1 Spin(1, 2) ⊗ Spin(8) decomposition

We define

Γ ≡ Γ012 =
1

3!
εµνρΓµΓνΓρ, (B.4)

where εµνρ is the totally anti-symmetric tensor with ε012 = 1.

[Γ,Γµ] = 0, {Γ,ΓI} = 0. (B.5)

CΓT = ΓC. (B.6)

Γ± ≡ 1 ± Γ

2
. (B.7)

Decomposition:

Γµ = γµ ⊗ γ̄9, ΓI = 1 ⊗ γ̄I , (B.8)

– 13 –



J
H
E
P
0
8
(
2
0
0
8
)
0
7
2

where γµ’s are gamma matrices in (1+2)D and γ̄’s are that of 8D, and

γ̄9 ≡ γ̄3 · · · γ̄10. (B.9)

If we choose the basis for the (1+2)D Clifford algebra as

γ0 = iσ2, γ1 = σ1, γ2 = σ3, (B.10)

then

Γ ≡ Γ012 = 1 ⊗ γ̄9, (B.11)

i.e. the chirality for Γ and γ̄9 becomes the same.

C. Majorana spinors

Majorana condition in 11D:

Ψ = CΨ̄T . (C.1)

Conjugate momentum (for kinetic terms the same to (2.8))

ΠΨα =
i

2
(Ψ̄Γ0)α =

i

2
(Γ0T C−1Ψ)α. (C.2)

Dirac bracket:

{Ψα,Ψβ}D = −i
(

Γ−Γ0C
)

αβ
, (C.3)

where here and in the following we suppress space coordinates and spinor indices when it

is obvious.

D. Supercharge commutation relations

qNL = −Γ0Ψ⊙, (D.1)

qL = −〈ΓIΨ,D0X
I〉 − 〈ΓIΓ0ΓiΨ,DiX

I〉
−1

6
〈ΓIJKΓ0Ψ, [XI ,XJ ,XK ]〉. (D.2)

For any fields Φ in the BLG model,

i{η̄αQNL
α ,Φ}D = δηΦ, (D.3)

i{ǭαQα,Φ}D = δǫΦ. (D.4)

We obtain

i{qNL
α ,Ψ⊙β}D = (Γ−C)αβ . (D.5)
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Dirac brackets for super charges:

i{qNL
α , QNL

β }D =
(

Γ−Γ0C
)

αβ
, (D.6)

i{qNL, QL}D + i{qL, QNL}D = ΓIC∂0X
I
⊙ − ε0i

jΓ
jΓIC∂iX

I
⊙

− 1

12
ε0

ij〈[XI ,XJ ,XK ], T⊙〉ΓijIJKC. (D.7)

This leads to (2.37).

i{qL, QL}D = 2pµΓ+ΓµC

−〈DiX
I ,DjX

J〉ε0ijΓ+ΓIJC

+〈D0X
I , [XI ,XJ ,XK ]〉Γ+ΓJKC

+
1

3
〈DiX

I , [XJ ,XK ,XL]〉Γ+Γ0iIJKLC

−1

4
〈[XI ,XJ ,XK ], [XI ,XL,XM ]〉Γ+Γ0JKLMC. (D.8)

This leads to (2.18).

The bosonic part of the energy-momentum tensor:

Tµν = 〈DµXI ,DνXI〉 − ηµν

(

1

2
〈DρXI ,DρX

I〉 + V (X)

)

, (D.9)

The bosonic part of the Hamiltonian density:

H =
1

2
〈P I , P I〉 +

∑

i=1,2

1

2
〈DiX

I ,DiX
I〉 + V (X). (D.10)

The momentum densities:

p0 = H, pi = 〈D0X
I ,DiX

I〉, pI = ∂0X
I
⊙. (D.11)
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